Journal of Organometallic Chemistry, 169 (1979) 301-308 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

FRAGMENTATION OF SYMMETRICALLY SUBSTITUTED METHYLFERROCENES UNDER ELECTRON IMPACT

E.I. MYSOV, I.R. LYATIFOV, R.B. MATERIKOVA * and N.S. KOCHETKOVA

The Institute of Organo-Element Compounds of the U.S.S.R. Academy of Sciences, Moscow (U.S.S.R.)

(Received October 17th, 1978)

Summary

Mass spectra of a series of individual methylferrocenes $(Me_nC_5H_{5-n})_2Fe$ (where n = 1-5) are reported. The manner of fragmentation of these compounds is discussed.

Monoisotopic mass spectra of individual compounds of the $(Me_nC_5H_{5-n})_2Fe$ series are given in Tables 1—5 and illustrated in Figs. 1—3 *. The spectra display features characteristic of all alkylferrocenes, i.e., largest intensity for the molecular ion, the presence of M—H and M—H₂ ions, a group of doubly charged ions corresponding to the group of ions situated in the vicinity of M, etc. Of interest, the M^{2+} ion has largest intensity after the molecular ion in the spectrum of decamethylferrocene, and the process shown in eq. 1, confirmed by metastable transition, is observed.

$$M^{2+} \xrightarrow{*_{148}} (M - CH_3)^{2+} + CH_3$$

The consecutive accumulation of methyl groups results in an appreciable increase in the summary current of fragment ions in the spectra of moderately substituted members of the series, i.e., 1,1',3,3'-tetramethylferrocene and 1,1',2,2',4,4'-hexamethylferrocene (the maximum, see Fig. 4 and Table 6). The latter also gives extreme values in other physico-chemical investigations of this series. For instance, in its ¹³C NMR spectra the signal of its C(Cp) atoms exhibits maximum shift towards low field and in it IR absorption spectrum this compound has the highest number of bands [2]. The degree of fragmentation also depends on the symmetry of the molecule. It is expected that the (Continued on p. 304)

(1)

^{*} In Tables 1—5 all peaks of intensity greater than 0.3% are given, the intensity of the molecular ion (M) being regarded as 100%. The data for 1,1'-dimethylferrocene and ferrocene are the same as in ref. 1; ferrocene is included as the parent compound.

Fig. 1. Mass spectra of ferrocene and 1,1'-dimethylferrocene.

Fig. 2. Mass spectra of 1,1',3,3'-tetramethylferrocene and 1,1',2,2',4,4'-hexamethylferrocene.

Fig. 3. Mass spectra of octa- and deca-methylferrocene.

	5H4)2Fe ^b	$(C_5H_5)_2Fe^{a}$			
I	Ion	m/e	I	Ion	m/e
 1.6	C3H3 ⁺	39	3.9	C3H3 ⁺	89
28.4	Fe ⁺	56	31.6	Fe ⁺	56
5.0	FeH ⁺	57	0.92	FeH ⁺	57
	•		0.49	C₅H3 ⁺	63
2.8	C ₆ H ₅ ⁺	77	0.74	C ₅ H ₅ ⁺	65
1.2	$C_6H_6^+$	78	0.43	$C_5H_6^+$	66
6.2	$C_6 H_7^+ (L^+)$	79	4.90	C_2HFe^+	81
3.0	C ₂ HFe ⁺	81	0.90	C ₂ H ₂ Fe ⁺	82
0.85	C ₂ H ₂ Fe ⁺	82	7.40	M ²⁺	93
1.00	$C_{2}H_{3}Fe^{+}$	83	3.90	C ₃ H ₂ Fe ⁺	94
0.36	C ₇ H ₇ ⁺	91	5.50	C ₃ H ₃ Fe ⁺	95
· 1.09	C ₃ H ₂ Fe ⁺	94	34.60	C ₅ H ₅ Fe ⁺	121
3.54	M ²⁺	107	0.30	C5H6Fe ⁺	122
8.6	C ₅ H ₅ Fe ⁺	121	2.60	C ₁₀ H ₈ +	128
0.3	C ₅ H ₅ FeH ⁺	122	3.40	C10H9 ⁺	129
31.6	C ₆ H ₆ Fe ⁺	134	1.19	C ₆ H ₆ Fe ⁺	134
5.68	C ₆ H ₇ Fe ⁺ (LFe ⁺)	135	1.84	$(M - H_2)^+$	184
5.60	$(M - CH_3)^+$	199	0.58	$(M - H)^+$	185
5.40	$(M - CH_2)^+$	200	100.00	M^+	186
1.11	$(M - H_2)^+$	212	0.60	$(M + H)^{+}$	187
6.47	$(M - H)^{+}$	213			
100	M^+	214			
1.5	$(M + H)^{+}$	215			

TABLE 1. MASS SPECTRA OF FERROCENE AND 1,1'-DIMETHYLFERROCENE

^a The following metastables are observed: 182.0, $M^+ \to (M - H_2)^+ + H_2$; 78.7, $M^+ \to C_5H_5Fe^+ + C_5H_5$; 25.9, $C_5H_5Fe^+ \to Fe^+ + C_5H_5$. ^b The following metastables are observed: 212, $M^+ \to (M - H)^+ + H$; 210, $M^+ \to (M - H_2)^+ + H_2$; ~185, $M^+ \to (M - CH_3)^+ + CH_3$; 85.1, $M^+ \to (M - L)^+ + L$; 83.8, $M^+ \to (M - L - H)^+ + (L + H)$; 75, $C_6H_6^+ \to C_6H_5^+ + H$; 73.5, $(M - CH_3)^+ \to C_5H_5Fe^+ + C_6H_6$; 46.6, $C_7H_7^+ \to C_5H_5^+ + C_2H_2$; 23.4, $(M - L - H)^+ \to Fe^+ + C_6H_6$.

m/e	Ion	<i>I</i>	m/e	Ion	I
39	с ₃ н ₃ +	3.07	97	C ₇ H ₁₃ ⁺ (C ₅ H ₇ Me ₂ ⁺)	0.87
41	С ₃ н ₅ +	1.57	120	$(M - H_2)^{2+}$	0.90
50	$C_{4}H_{2}^{+}$	0.87	121	M ²⁺	4.80
51	$C_4H_3^+$	1.26	122	C ₅ H ₆ Fe ⁺	0.49
52	C ₄ H ₄ +	0.55	132	CH ₃ C ₅ HFe ⁺	0.33
53	$C_{4}H_{5}^{+}$	1.26	133	CH ₃ C ₅ H ₂ Fe ⁺	0.76
56	Fe ⁺	46.93	134	CH ₃ C ₅ H ₃ Fe ⁺	5.71
57	FeH ⁺	4.49	135	CH ₃ C ₅ H ₄ Fe ⁺	5.58
63	C ₅ H ₃ +	0.47	147	(CH ₃) ₂ C ₅ HFe ⁺	2.86
65	C ₅ H ₅ ⁺	2.68	148	(CH ₃) ₂ C ₅ H ₂ Fe ⁺	18.71
71	CH3Fe ⁺	1.23		(M-L-H)	
77	C6H5+	6.38	149	(CHa)2C5HaFe ⁺	4.62
78	C6H6 ⁺	0.87	212	(CH ₃ C ₅ H ₃) ₂ Fe ⁺	0.66
79	$C_6H_7^+(C_5H_4CH_3^+)$	2.83		$(M - 2CH_3)^+$	0.00
81	C ₂ HFe ⁺	3.31	213	$(M - CH_3 - CH_2)^+$	0.31
82	C ₂ H ₂ Fe ⁺	0.74	214	$(M - 2CH_2)^+$	0.32
83	C ₂ H ₃ Fe ⁺	0.74	226	$(M - CH_3 - H)^+$	0.81
91	$C_7 H_7^+ (L - H_2)$	13.34	227	$(M - CH_3)^+$	3.65
92	C7H8 ⁺	3.11	228	$(M - CH_2)^+$	1.02
93	$C_7H_9^+(L)$	10.46	239	$(M - 3H)^{+}$	0.35
94	C ₃ H ₂ Fe ⁺	1.14	240	$(M - H_2)^+$	0.47
94	$C_{7}H_{10}^{+}(LH)$	0.36	241	$(M - H)^+$	3.94
95	C ₃ H ₃ Fe ⁺	2.91	242	M ⁺	100.00
96	C ₃ H ₄ Fe ⁺	1.06			
96	$C_7H_{12}^+(LH_3)$	1.59			

MASS SPECTRUM OF 1,1',3,3'-TETRAMETHYLFERROCENE ^a

^a The following metastables are observed: 240, $M \to M - H_1$; 238, $M \to M - H_2$; 225, $M - CH_2 \to M - CH_3$; 213, $M \to M - CH_3$; 198, $M - CH_3 \to M - 2CH_3$; 145, $M - L \to M - L - H_2$; 133, $M - L - CH_2 \to M - L - CH_3$; 90, $C_7H_8^+ \to C_7H_7^+$; 89, $C_7H_9^+ \to C_7H_7^+(L \to L - H_2)$; 63.7, $L \to C_6H_5^+ + CH_4$; 58, $M - L \to L$; 46.4, $C_7H_7^+ \to C_5H_5^+ + C_2H_2$; 21.2, $M - L - H \to Fe^+$.

more asymmetric the ring substitution, the higher the influence of vibrations such as ring tilting or perpendicular ring distortion [3] on fragmentation of the molecular ion.

In contrast to the consecutive elimination of C_5H_5 ligands in ferrocene, frag-

Fig. 4. The ratio of summary fragment ions current to the molecular ion current in the methylferrocene series $(Me_nCp)_2$ Fe (n = 1-5).

TABLE 2

MASS SPECTRUM OF 1,1',2,2',4,4'-HEXAMETHYLFERROCENE a

m/e	Ion	I	m/e	Ion	I
39	C3H3+	4.61	107	L ⁺	20.81
41	C3H5+	4.37	109	C ₄ H ₅ Fe ⁺	0.44
51	$C_{4}H_{3}^{+}$	1.43	119	C5H3Fe ⁺	0.40
53	$C_{4}H_{5}^{+}$	2.10	120	C ₅ H ₄ Fe ⁺	1.12
56	Fe ⁺	43.46	121	C5H5Fe ⁺	1.64
57	FeH ⁺	3.12	122	C ₅ H ₆ Fe ⁺	1.01
63	$C_{5}H_{3}^{+}$	0.60	127.5	$(M - CH_3)^{2+}$	~0.20
65	$C_{5}H_{5}^{+}$	4.60	132	$(M - L - 2CH_3 - H)^+$	0.45
67	$C_5H_7^+$	1.06	133	$(M - L - 2CH_3)^+$	0.34
69	CHFe ⁺	0.36	134	$(M-L-\mathrm{CH}_2-\mathrm{CH}_3)^+$	1.67
70	CH ₂ Fe ⁺	0.43	135	M ²⁺	15.17
71	CH ₃ Fe ⁺	2.45	146	$(M - L - CH_3 - H_2)^+$	0.53
77	$C_6H_5^+$	5.40	147	$(M-L-CH_3-H)^+$	2.50
78	C ₆ H ₆ +	0.89	148	$(M-L-CH_3)^+$	8.80
79	C ₆ H ₇ ⁺ (C ₅ H ₄ CH ₃) ⁺	7.64	149	$(M-L-\mathrm{CH}_2)^+$	4.26
81	C ₂ HFe ⁺	2.62	158	$(M - L - 5H)^+$	0.33
82	C ₂ H ₂ Fe ⁺	1.43	160	$(M-L-3H)^+$	0.85
83	$C_2H_3Fe^+$	0.94	161	$(M - L - H_2)^+$	3.36
89	C7H5 ⁺	0.39	162	$(M - L - H)^+$	20.00
91	$C_{7}H_{7}^{+}$	25.26	163	$(M-L)^+$	3.89
92	$C_7H_8^+(L-CH_3)$	1.43	240	$(M - 2CH_3)^+$	1.32
93	С ₇ Н9 ⁺	4.36	241	$(M - CH_3 - CH_2)^+$	0.47
94	C ₃ H ₂ Fe ⁺	0.98	242	$(M - 2CH_2)^+$	0.39
95	C ₃ H ₃ Fe ⁺	3.98	253	$(M - CH_3 - H_2)^+$	0.82
96	C ₃ H ₄ Fe ⁺	3.11	254	$(M - CH_3 - H)^+$	1.05
103	$(L - 2H_2)^+$	1.57	255	$(M - CH_3)^+$	9.83
104	$(L - 3H)^{+}$	0.57	267	$(M - 3H)^+$	0.40
105	$(L - H_2)^+$	19.52	268	$(M - H_2)^+$	1.29
106	(L — H) ⁺	13.37	269	$(M - H)^+$	4.34
107	C ₄ H ₃ Fe ⁺	15.33	270	M ⁺	100.00

^a The following metastables are observed: 268, $M \to M - H$; 266, $M \to M - H_2$; 253, $M - CH_3 \to M - CH_3 - H$; 251, $M - CH_3 \to M - CH_3 - H_2$; 241, $M \to M - CH_3$; ~226, $M - CH_3 \to M - 2CH_3$; 159, $M - L \to M - L - H_2$; 158, $M - L - H \to M - L - 3H$; 145, $M - L - CH_2 \to M - L - CH_4$; 101, $L - H_2 \to L - 2H_2$; ~97, $M \to (LFe-H)^+ + (L + H)$; 90, $C_7H_8^+ \to C_7H_7^+$; 78.3, $L - H \to C_7H_7^+ + CH_3$; ~77.5, $L \to C_7H_7^+ + CH_4$; 75, $C_5H_4CH_3^+ \to C_5H_4CH^+$; ~70, $LFe \to L$; 59.5, $L - H_2 \to C_5H_4CH_3^+ + C_2H_2$; 58.5, $L \to C_5H_4CH_3^+ + C_2H_4$; 46.4, $C_7H_7^+ \to C_5H_5^+ + C_2H_2$; 23.4, $C_5H_5^+ \to C_3H_3^+ + C_2H_2$; 21.2, $(L - CH_3)Fe^+ \to Fe^+ + (L - CH_3)$; 19.3, $(L - H)Fe^+ \to Fe^+ + (L - H)$.

mentation of methylferrocene $(Me_nCp)_2$ Fe (n = 1-3) occurs mainly by elimination of neutral fragments, corresponding to the initial methylcyclopentadienes (L + H) and then to methylfulvenes (L - H). The more methylated, symmetrical octa- and decamethyl-ferrocenes eliminate fragments corresponding to methylcyclopentenes and tetramethylbenzene, the product of methine (CH) incorporation into the tetramethylcyclopentadienyl ligand. All these processes may result only from rearrangements involving the transfer of C and H atoms from one ligand to another. The fact that all of them are confirmed by metastable transitions shows that they involve low-lying excited doublet states with long lifetimes [4], another indication of the stabilizing effect of electron-donor methyl groups on molecular ions of polymethylferrocenes.

TABLE 4

MASS SPECTRUM OF sym-OCTAMETHYLFERROCENE ^a

m/e	Ion	I	m/e	Ion	I
39	C3H3+	1.26	121	C ₅ H ₅ Fe	0.54
41	C ₃ H ₅	4.33	121	<i>L</i> , C ₅ H(CH ₃) ₄	6.85
43	C ₃ H ₇	0.86	122	C ₅ H ₆ Fe	0.34
51	C4H3	0.45	134	CH ₂ C ₅ H ₄ Fe	1.63
53	C ₄ H ₅	1.11	135	CH ₃ C ₅ H ₄ Fe	0.37
55	C ₄ H ₇	0.87	141.5	$(M - CH_3)^{2+}$	0.56
56	Fe	12.41	146	(CH ₃) ₂ C ₅ H ₃ Fe—3H	0.80
57	FeH	0.95	147	(CH ₃) ₂ C ₅ H ₃ Fe — 2H	0.34
65	CsHs	1,21	148	$(M - H_2)^{2+}$	1.66
67	C_5H_7	0.49	149	M^{2+}	7.20
71	CH ₃ Fe	1.17	158	$(M - L - CH_3 - 2H_2)^+$	0.52
77	C ₆ H ₅	3.75	160	$(M - L - CH_3 - H_2)^+$	3.47
78	C ₆ H ₆	0.68	161	$(M-L-CH_3-H)^+$	1.54
79	C ₅ H ₄ CH ₃	4.21	162	$(M - L - CH_3)$	3.73
81	C ₂ HFe	0.71	163	$(M - L - CH_2)$	1.07
82	C ₂ H ₂ Fe	0.55	172	(M - L - 5H)	0.74
83	C ₂ H ₃ Fe	0.61	174	(<i>M</i> — <i>L</i> — 3H)	6.21
91	C ₇ H ₇	7.66	175	$(M - L - H_2)$	1.92
93	$C_7H_9(L-2CH_2)$	2.61	176	(M - L - H)	2.79
96	C ₃ H ₄ Fe	0.88	177	(M-L)	1.31
103	$L = CH_2 = 2H_2$	-1.56	266	$(M - 2CH_3 - H_2)$	0.82
104	$L - CH_2 - 3H$	1.36	268	(<i>M</i> — 2CH ₃)	0.77
105	$L = CH_2 - H_2$	10,79	279	$(M - CH_3 - 2H_2)$	0.65
106	$L - CH_3$	1.39	280	$(M - CH_3 - 3H)$	0.60
107	$L - CH_2$	2.38	281	$(M - CH_3 - H_2)$	2.76
108	CaHaFe	0.62	282	$(M - CH_3 - H)$	0.60
109	C4H5Fe	0.31	283	$(M - CH_3)$	13.15
115	$L = 3H_2$	0.82	285	(M - CH)	0.35
116	L - 5H	0.36	293	(M — 5H)	0.34
117	$L - 2H_7$	1.48	295	(M — 3H)	0.47
118	L - 3H	4.25	296	$(M - H_2)$	0.76
119	$L - H_2$	11.00	297	(M - H)	5.83
120	C5H4Fe	0.34	298	М	100.00
120	<i>L</i> —н	2,29	299	(M + H)	1.77

^a The following metastables are observed: 294, $M \rightarrow M - H_2$; 279, $M - CH_3 \rightarrow M - CH_3 - H_2$; 277, $M - CH_3 - H_2 \rightarrow M - CH_3 - 2H_2$; ~268.5, $M \rightarrow M - CH_3$; ~252.5, $M - CH_3 - H_2 \rightarrow M - 2CH_3 - H_2$; ~101, $M \rightarrow (M - L - 3H)^+ + (L + 3H)$; ~89, $M - H_2 \rightarrow (M - L - CH_3)^+ + (L + CH)$; 75, $(C_5H_4CH_3)^+ \rightarrow C_6H_5^+$; 71.5, $L \rightarrow (CH_3)_2C_5H_3^+ + C_2H_4$; 59.5, $(L - CH_3 - H)^+ \rightarrow (C_5H_4CH_3)^+ + C_2H_2$.

Among the ions corresponding to the ligand L, the spectra contain L^+ , $(L-H)^+$, $(L-2H)^+$, etc.; the following series results from elimination of n CH₂ groups from these ions (n = 1-4). In the mass spectra of tetramethyland more methylated ferrocenes the $C_7H_7^+$ ion, m/e 91, is one of the most intensive hydrocarbon ions. In the spectra of hexa-, octa- and deca-methyl-ferrocene its intensity is proportional to that of $(M-LH_m)^+$ ions (m = 1, 3) and Fe⁺ (see Table 7).

The mass spectra were recorded on a Varian-MAT CH-8 spectrometer with the ionization potential 70 eV and the ion source temperature 150°C. The purity of the compounds was confirmed by GLC and by elemental analysis. The compounds were obtained as usual.

m/e	Ion	Ι	m/e	Ion	I
41	C ₃ H ₅	2.16	135	L	1.14
43	C ₃ H ₇	0.44	145	(CH ₃)CH ₂ C ₅ Fe	0.51
53	C ₄ H ₅	0.86	146	(CH ₃) ₂ C ₅ HFe	0.53
55	C ₄ H ₇	0.17	148	(CH ₃) ₂ C ₅ H ₂ Fe	0.55
56	Fe	3.58	155.5	$(M - CH_3)^{2+}$	1.40
57	FeH	0.32	160	$(M - L - 2CH_3 - H)$	1.10
65	C ₅ H ₅	0.45	162	$(M - H_2)^{2+}$	0.71
71	CH ₃ Fe	0.42	162.5	$(M - H)^{2+}$	0.31
77	C ₆ H ₅	1.17	163	M^{2+}	7.99
79	C ₅ H ₄ CH ₃	1.02	172	$(M - L - CH_3 - 2H_2)$	0.35
81	C ₂ HFe	0.31	174	$(M-L-CH_3-H_2)$	3.24
91	C7H7	2.58	175	$(M-L-CH_3-H)$	0.66
93	$(L - 3CH_2)$	0.77	176	$(M - L - CH_3)$	1.28
95	C ₃ H ₃ Fe	0.35	177	$(M-L-CH_2)$	0.37
95	$(L - 3CH_2 + H_2)$	0.43	184	(M-L-7H)	0.30
103	$(L - 2CH_3 - H_2)$	0.52	186	(M - L - 5H)	1.17
104	$(L - 2CH_3 - H)$	0.31	188	(M-L-3H)	2.73
105	$(L - 2CH_3)$	2.52	18 9	$(M-L-H_2)$	0.85
107	$(L-2CH_2)$	0.59	190	(M-L-H)	0.90
108	C4H4Fe	0.32	191	(M-L)	0.46
115	$(L - CH_2 - 3H_2)$	0.63	294	$(M - 2CH_3 - H_2)$	0.46
116	$(L - CH_2 - 5H)$	0.46	296	$(M - 2CH_3)$	0.60
117	$(L - CH_2 - 2H_2)$	1.43	307	$(M - CH_3 - 2H_2)$	0.85
118	$(L - CH_2 - 3H)$	1.30	308	$(M - CH_3 - 3H)$	0.41
119	$(L - CH_2 - H_2)$	4.94	309	$(M - CH_3 - H_2)$	0,84
120	$(L - CH_3)$	0.54	310	$(M - CH_3 - H)$	0.48
121	$(L - CH_2)$	1.08	311	$(M - CH_3)$	3.44
131	$(L - 2H_2)$	0.38	312	$(M - CH_2)$	3.01
132	(L-3H)	1.79	321	(M - 5H)	0.59
133	$(L - H_2)$	7.12	325	(M — H)	4.33
134	CH ₂ C ₅ H ₄ Fe	0.56	326	M	100.00
134	(L - H)	0.57	327	(M + H)	1.29
135	CH ₃ C ₅ H ₄ Fe	2.04	328	$(M + H_2)$	2.73

^a The following metastables are observed: 324, $M \to M - H$; 307, $M - CH_3 \to M - CH_3 - H_2$; 305, $M - CH_3 - H_2 \to M - CH_3 - 2H_2$; 296.6, $M \to M - CH_3$; ~280, $M - CH_3 \approx (M - 2CH_3 - H)^+ + CH_4$; 148, 5, $M^{2+} \to (M - CH_3)^{2+}$.

TABLE 6

THE RATIO OF SUMMARY FRAGMENT IONS CURRENT TO THE MOLECULAR ION CURRENT IN THE (Me_nCp)₂Fe series

n	0	1	2	3	4	5
$\Sigma I_{\rm f}/I_{\rm M}$	1.05	1.30	1.65	2.60	1.55	0.9

TABLE 7

THE RATIO BETWEEN INTENSITIES OF Fe⁺(A), C₂H₂⁺(B) AND $(M - LH_m)^+$ (C) IONS IN MASS SPECTRA OF (1,2,4-Me₃Cp)₂Fe, (Me₄Cp)₂Fe AND (Me₅Cp)₂Fe

Compound	Α	в	С	B/A	B/C	B'(A + C)
(1,2,4-Me ₃ Cp) ₂ Fe	43.5	25.5	20.0	0.58	1.37	0.40
(Me ₄ Cp) ₂ Fe	12.0	7.0	6.5	0.58	1.07	0.38
(Me ₅ Cp) ₂ Fe	4.0	2.5	3.0	0.62	0.83	0.37

References

1 E.I. Mysov, B.V. Juk, G.A. Domrachev, R.B. Materikova, N.S. Kochetkova and N.N. Semenov, J. Organometal. Chem., in press.

.

- 2 R.B. Materikova, V.N. Babin, I.R. Lyatifov, T.Kh. Kurbanov, E.I. Fedin, P.V. Petrovskii and A.I. Lutsenko, J. Organometal. Chem., 142 (1977) 81.
- 3 D.M. Duggan and D.N. Hendrickson, Inorg. Chem., 14 (1975) 955.
- 4 R.C. Dougherty, J. Amer. Chem. Soc., 90 (1968) 5780.

۰.